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ABSTRACT 

In order to study the dispersion mechanism occurring in the interstitial space of 
a porous medium, a column was packed with large (210 pm) impenetrable particles by 
a special dry-packing procedure, designed to obtain a permeable bed .that is as uni- 
form as possible. The experimental conditions are selected so as to eliminate as far as 
possible any other source of dispersion and focus essentially on that arising in the 
moving fluid. A linear regression analysis of the dispersion data for non-retained 
solutes shows that the Huber and the Horvsith and Lin models fail to describe correct- 
ly the experimental results whereas the Giddings model provides a good fit to the 
data. The reduced plate height becomes constant and equal to 2 at high reduced 
velocities. It reaches a minimum value of 1 at a reduced velocity of about 3. The 
models and some previously published experimental data are discussed at the light of 
these results. 

INTRODUCTION 

The quality of chromatographic resolution depends on the extent of the 
broadening of the individual component zones as much as on the retention gap 
between adjacent zones. The control of this zone broadening, and hence of the 
dispersion of the zones as they migrate along the chromatographic column, has always 
been an essential goal in optimization studies of chromatographic separations. The 
zone dispersion in the column is due essentially to two broad classes of phenomena: (i) 
longitudinal molecular diffusion as a result of longitudinal solute concentration 
gradients and (ii) resistance to mass transfer between regions of the cross-section with 
different velocity components along the direction of flow. The former depends 
essentially on the time spent by the solute in the column. The latter can occur because 
of the retention of the solute on, or in, a stationary phase or because of the presence of 
a stagnant region of the mobile phase inside the pores of the particles. The contribution 
to the band broadening arising from these different sources is relatively well 
documented, especially when one is specifically concerned with their dependence on 
the carrier flow-rate. Flow non-uniformities in the cross-section of the column are also 
present in the interstitial space between the particles because of the shear forces 
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associated with the viscous flow and of the more or less erratic path followed by the 
flow streamlines in the complex geometry of the porous bed. These flow inequalities 
contribute to the zone dispersion but the dependence of this contribution on the 
flow-rate is relatively complex. Several equations based on different approaches and 
differing mainly in the exponent of the velocity have been developed to account for this 
contribution. Exponents 1, l/2 and l/3 appear in the eddy diffusion coupling term of 
the models developed by Giddingsi, Huber and Hulsmanz,3 and Horvath and Lin4, 
respectively. In spite of the practical importance of the corresponding term in the 
plate-height equation (it has a major influence on the coordinates of the minimum of 
the Van Deemter curve), no definitive proof of the correctness of any of these models 
can yet be established from experimental liquid chromatographic measurements as 
various and sometimes conflicting conclusions about this contribution have been 
derived by different authors. 

It seems that these discrepancies arise mainly because the relatively slight 
differences between the three models are obscured by other contributions to band 
broadening (resistance to mass transfer in the stagnant carrier fluid within the pores of 
the particles or in the stationary phase, influence of retention on dispersion, 
extra-column band broadening) or because it was erroneously assumed that the 
dispersion coefficient was constant along the column whereas, in fact, a length- 
averaged coefficient is experimentally measured. This might be the case in liquid 
chromatography with packings of small particles as the relatively large pressures 
applied at the column inlet may affect the values of the diffusion coefftcients. Further, 
under these conditions, the radial dissipation of the heat generated by the friction of 
the liquid on contact with the particles induces a radial viscosity profile and, 
consequently, a velocity profile which contributes to the broadening of the zones. 
Preliminary calculations indicate that the contribution of this effect to the plate height 
might increase with the fifth power of the velocity for a fully developed temperature 
prolile5. 

The aim of this study was to determine the best model describing the physical 
dispersion process occurring in the interstitial space of the chromatographic packing. 
The experimental conditions are designed so as to focus essentially on this source of 
band broadening by eliminating, as far as possible any other contribution to the 
dispersion, except, of course, the irreducible longitudinal molecular diffusion, These 
conditions include the use of sieved, impervious and spherical particles, very low 
pressure drops, non-retained solutes and a packing procedure that provides a packing 
that is as regular as possible. Special attention was paid to the column arrangement to 
avoid any disturbing fluid instability and to the initial filling of the packing by the 
liquid to ensure that no air pockets remain entrapped within the packing. 

THEORY 

If structural heterogeneities present in the porous medium have a length scale 
which is small in comparison with the column length, the dispersion of the solute is 
described by the classical convection-diffusion equation: 

(1) 
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which is a combination of the phenomenological Fick’s law and of the mass 
conservation law. Although dispersion occurs in all directions, one is concerned here 
only with dispersion along the longitudinal flow direction. The variable x is the 
distance along the column from the inlet, t the time, U the mean mobile phase velocity, 
c the cross-sectional average concentration of the solute and D the overall solute 
dispersion coefficient. In order for these terms to be defined, one has to assume the 
existence of a scale beyond which the porous medium is homogeneous, i.e., the 
variables c, U, D and x are averaged over a volume known as the representative 
elementary volume, which must be of a small size compared with the column volume. 

In the situation where one injects a continuous solution of solute with 
a concentration c,,,, starting at time t = 0, at the inlet of the column previously filled 
with a solution of concentration cmin, which corresponds to the experimental set-up of 
this study, the limiting conditions for concentration in time and space are, respectively, 

T(x,t = 0) = 0 

T(x = 0, t) = 1 

and, assuming a semi-infinite medium: 

T(x-+oo,r)=O 

In these equations r is the dimensionless concentration (c - 
solution of eqn. 1 with these limiting conditions is6 

r(x, t) = $[erfcr$) + exp($)erfcr$)] 

- 

(2) 

(31 

(4) 

C&a The 

(5) 

which, when Ux/D is larger than 100, becomes, with a good approximation, equal to6 

x - ut 
r(x, t) = t erfc ~ 

( ) 2JE 
(6) 

In eqns. 5 and 6, erfc represents the complementary error function. The approximation 
represented by eqn. 6 fully applies under the present experimental conditions where 
Ux/D lies in the range 2 . 103-2 . lo6 when x is taken as the column length. 

The study of the dispersion of the solute reveals different properties of the 
medium depending on the flow-rate. When the mean velocity is very low, the solute 
dispersion is the same as the molecular diffusion which would be observed if 
a concentration gradient of the solute was established between the inlet and the outlet 
of the column without flow. The dispersion coefficient, D, measured is then 
proportional to the molecular diffusion coefficient, D, and 
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The factor T is known as the tortuosity and is larger than 1. The tortuosity can be 
determined by measurements of the electrical conductivity of the packing. It is found 
that, in the porosity range encountered in bead packings, T w em112, where E is the 
porosity of the packing’ss. 

When the carrier flow-rate increases, the dispersion coefficient is no longer 
constant but becomes a function of the mean velocity. More generally, this function 
depends on the dimensionless reduced velocity, or P&let number, Pe, which is the ratio 
of the times required to transport the solute along one particle by diffusion and by 
convection: 

(8) 

where dp is the particle diameter and U the mean velocity. 
It is convenient to express the dispersion in terms of the dispersion length, Ld: 

Ld = D/U (9) 

This length represents half the plate height frequently used in the field of separation 
science. 

Various equations, or models, have been proposed to represent the dependence 
of the dispersion length on the operational parameters and, especially, the carrier 
velocity. The models relevant in the context of this study are presented below assuming 
that there is no interaction of the solute with the packing, i.e., no retention, and that the 
packing is made of impervious rigid spheres (no internal pores). Accordingly, 
dispersion will only occur in the space occupied by the carrier fluid between the 
particles and, apart from the molecular diffusion term arising from the existence of 
a longitudinal concentration gradient and expressed by the eqn. 7, is due to flow 
variations associated with structural heterogeneities of this space. 

The Giddings model 
The velocity field in a packed bed is much more complex than that in a capillary 

tube. Consequently, apart from the Taylor-like dispersion arising in an interstitial flow 
channel because of the transversal velocity variations within this channel, solute 
dispersion can also come from the erratic flow pattern associated with the presence of 
a more or less regular array of particles. These two kinds of dispersion processes can be 
called hydrodynamic dispersion and geometric (or mechanical) dispersion, respective- 
ly. One notes in passing that the latter process is also known as the anastomosis and, 
more commonly in the chromatographic literature, as the “eddy diffusion”, a term 
which we prefer to avoid as it has mistakenly been associated in the past by some 
authors with the eddies induced by a turbulent flow. Clearly, the geometric dispersion 
mechanism appears in the laminar flow regime at low values of the Reynolds number. 

The influence of these two kinds of dispersion was recognized in one of earliest 
models of peak broadening in chromatography by Van Deemter et al.‘, who simply 
added their respective contributions to the dispersion length. Later, this model was 
modified by Giddings’, who noted that these contributions are not independent and 
thus additive but, instead, are coupled. 
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In this model, five different levels of flow heterogeneities are considered for 
packings of porous particles’. In the present study dealing with non-porous particles 
packed by a special procedure to ensure a packing as regular as possible, one will be 
concerned mainly with the trans-channel level and, to a lesser extent, with the 
short-range inter-channel level. The characteristic length scale of these velocity 
variations is assumed to be proportional to the particle diameter. 

This model assumes that the dispersion due to the velocity variations is similar to 
a random walk process. The time corresponding to an elementary step, or correlation 
time, is defined as the time necessary for a solute molecule to travel from one velocity 
domain to another. Two mechanisms allow this transport, molecular and convection, 
which both have a specific correlation time. The corresponding dispersion lengths 

and Ld,geo for the diffusive (hydrodynamic dispersion) and convective 
eometric dispersion) mechanisms are, respectively, 

L d,geo = n&i (11) 

where A and Care dimensionless parameters which depend on the scale and amplitude 
of flow non-uniformities. 

Basically, the coupling theory assumes that the total numbers of steps in the 
random walk is the sum of the number of steps for each of the individual processes. 
Then, the resultant correlation time and the resultant dispersion length appear to be 
the harmonic, rather than the arithmetic, sum of their respective individual contribu- 
tions. Accordingly, the overall dispersion length is, combining eqns. 7,9, 10 and 11: 

(12) 

or 

ld+-&.+ 1 

P ‘+- 1 

A CPe 

(13) 

where 1, is the reduced dispersion length, which is half the reduced plate height. In these 
equations, the individual contributions of the longitudinal concentration gradient and 
transversal flow non-uniformities to the dispersion length have been added as they act 
independently to disperse the solute. At large values of the Pellet number, the 
dispersion is controlled by the convective mechanism and then the coupling term 
becomes constant while the diffusive process is dominant at lower Pe values. 

The Huber model 
A model based on the mass balance equation was developed by Huber and 
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HulsmanzS3. It uses a correlation obtained through dimensional analysis of experi- 
mental data by Hiby” to express the dispersion term arising from the flow 
non-uniformities, which gives 

(14) 

or 

I,=&+ 1 

1+- 1 

A CPe112 

This equation differs from the Giddings equation by the exponent l/2 of the P&let 
number in the last term and in the numerical value of the dimensionless coefficient C. 

The Horvrith and Lin model 
The dispersion model developed by Horvith and Lin is based on the postulate 

that a stagnant layer of fluid surrounds the particles and occupies a fraction of the 
interstitial fluid volume4. According to the free surface theory of Happel’ ’ and Pfeffer 
and Happel r2, the thickness of this layer is proportional to Pe-1/3. 

The model assumes that the peak broadening of a non-retained solute is due to 
the geometric dispersion process during the flow-dependent time spent by the solute in 
the streaming part of the carrier fluid, which gives for the complete dispersion length 
expression 

or 

‘“=A+ 1 

I+_ 1 s 
(17) 

A CPe’13 

It also differs from the Giddings equation by the exponent of the P&let number in the 
second term on the right-hand side and in the numerical value of the dimensionless 
coefficient C. It must be clear that, in spite of the close similarity of eqns. 13 and 17, the 
latter is not based on a coupling effect and completely neglects the diffusive transport 
mechanism in the second term due to the velocity unequalities. Nevertheless, it is 
interesting that, if one wants to modify the Horvith and Lin model by introducing 
a coupling effect between the diffusive process in the stagnant layer and the convective 
process either in the whole interstitial fluid or only in its streaming part, by the 
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harmonic addition of the corresponding correlation times, one obtains an expression 
which has exactly the form of eqn. 14, obviously with different values of the 
dimensionless coefficients /i and C. Moreover, as indicated by Horvath and Lin in the 
note added in the proof of their paper4, the same form is found if one includes in the 
dispersion length expression the additional, and independent, peak broadening 
contribution due to diffusion into the stagnant layer by properly taking into account 
the flow-dependent “capacity factor” which reflects the distribution of the solute 
between the streaming and stagnant parts of the interstitial fluid (however, we found 
a term which is numerically three times smaller than that of Horvath and Lin). 

More recently, Koch and BradyI derived the dispersion coefficient associated 
with the presence of a boundary layer around the particles, which, according to 
Acrivos and Taylor14, is also found to have a thickness proportional to Pe- ‘13, and 
obtained a dispersion length expression which is a linear function of In Pe. Such an In 
U dependence was previously obtained by Saffmani5 using a different model. 

The Bouchaud and Georges model 
A general theory of the dispersion of solute species due to the spatial fluctuations 

of the velocity field has been recently developed by Bouchaud and Georges16 by means 
of models with a very simple geometry. In order to study the dispersion due to flow 
inhomogeneities in a porous medium, they use the idealized model represented in Fig. 
1, which consists of a succession of identical cells in series. In each cell, two flow paths 
of different lengths and permeabilities are connected in parallel. Let V and y V be the 
velocities in the fast and slow branches of lengths l and At, respectively (y < 1). 
A solute molecule entering a given cell has a probability P of entering the slow branch 
in which its mean residence time is XT‘>, while the time spent in one fast branch is 
simply t/V. Assuming that the dispersion process is ergodic, i.e., that the time spent in 
a given region is proportional to the volume of this region, a relationship is found 
between the probability P, -C 7 > and the volume fractionfof the slow branches. Using 
a statistical approach, Bouchaud and Georges derived a general expression for the 
dispersion length in terms of the first and second moments of the distribution law of the 
residence times in the slow paths. 

A particular expression is found in the case where the residence time is unique, 
which corresponds to a Dirac distribution. According to this model, each path does 
not contribute to the dispersion, but the overall dispersion of the transit times along 
a large number of cells arises from combination of the paths followed by a molecule, 

1 5 V 

Fig. 1. Schematic model suggested by Bouchaud and Georges I6 Two channel types (branches) are . 
connected in parallel in one of a succession of cells connected to each other cell in series. In channel 1 of 
length c, the microscopic velocity V leads the transport process whereas, in channel 2 of length @, the local 
velocity yV (y < 1) and the molecular diffusion both control the solute transport. 
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which is described by a binomial law. This model has been extended by Bouchaud” to 
the case where r, the constant residence time in a slow branch, is the result of the 
combination of the diffusive and connective transport processes according to the 
harmonic coupling law: 

Using the relationship between U, the average migration velocity of a solute molecule 
along the cell pattern, and Y resulting from the ergodicity hypothesis, the dispersion 
length is found in the limit of large cell numbers and for an equal path length of the two 
branches (A = 1): 

&+ 1 

2~ 40, 

t;f(l -n + LE2fv 

or 

(19) 

if the P&let number is defined as US/D,,,. These equations do not include the 
longitudinal molecular diffusion term. However, regarding the more important term, 
in the present context, due to flow inequalities, they are similar to the corresponding 
Giddings’ equations as far as the U dependence of the dispersion length is concerned. 
Clearly, this is due to the similarity of the ways in which the coupling between the 
diffusive and convective transports are introduced in the two approaches. However, 
eqns. 19 and 20, corresponding to the idealized, very simple geometric model 
represented in Fig. I, show that when such a coupling occurs at a microscopic level (the 
individual slow branch), it manifests itself in the dispersion process at the macroscopic 
level. Further the Bouchaud and Georges model provides a physical meaning for the 
numerical coefftcients which enter the dispersion equation. This is especially true for 
packings of porous particles. 

EXPERIMENTAL 

Packing procedure 
A 16.6 cm x 2.4 cm I.D. column was packed with the 200-220-pm sieving 

fraction of glass beads by a special dry packing procedure designed to obtain a porous 
bed that is as regular as possible (Fig. 2). A vibrating distributor induces a constant 
flow of particles falling onto a short column packed with large (5 mm I.D.) glass beads, 
which ensures a homogeneous distribution of the particles across the whole 
cross-section. Then the particles pass through a set of parallel, vertical, 2.5 mm I.D. 
tubes, which help to keep the particles flowing homogeneously in the whole 
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Fig. 2. Experimental set-up for column packing. A = hopper pouring the particles at a constant flow; B = 
packing of 5-mm glass beads; C = Iixed set of 2.5 mm I.D. tubes, D = column section being packed; E = 
column section already packed with particles; F = support which allows the column to move and rotate 
around its axes. 

cross-section of the packing assembly, before falling into the column to be packed. 
This column is moved down during the packing process in such a way as to maintain 
a constant falling height and avoid the formation of a longitudinal permeability 
gradient. At the same time, the column is rotating around its axis in order to avoid 
radial stratification of the packing. 

Materials and methods 
In order to avoid any trapping of bubbles which may significantly affect the 

dispersion process, the column, vertically orientated, is completely saturated with 
carbon dioxide, then filled upwards with water until the signal of an electrical 
conductivity cell monitoring the acidification of the water effluent due to the 
dissolution of the carbon dioxide bubbles becomes negligible. The volume of liquid in 
the column is of 28.5 cm3, which gives a porosity of 38.0%. This porosity value 
considerably exceeds the corresponding value (26%) for a dense and perfect 
crystal-like arrangement of identical spheres but lies well within the range of porosities 
experimentally obtained when randomly packing by various techniques a very large 
number of particles (here about 10’). It is believed that the packing procedure used in 
this study leads to a packing that is as uniform as possible. 

Dispersion measurements are performed by frontal analysis of a solution of 
a mixture of NaCl and CaCL rather than of a single salt solution, for eliminating ion 
exchange between the glass beads and the solution. A relative high concentration in the 
initial solution (0.5 g/l NaCl, 0.5 g/l CaCl*) is used in order to avoid further adsorption 
and ion exchange of the solute mixture, which would otherwise lead to retention and to 
a significant effect on the profile, as previously observed. Then, a continuous step of 
solution at a different salt concentration is introduced in the column by switching the 
pump head of a dual-piston syringe pump (Model 919, Harvard Apparatus, South 
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Natick, MA, U.S.A.) by means of a four-way switching valve. The flow-rate range 
investigated was 33 &min-20 ml/min, which corresponds to P&let numbers between 
0.5 and 300. The pressure drop in the column was always less than 0.2 bar. In all 
instances the Reynolds number was lower than 0.4, which prevents any dispersion 
perturbation associated with the onset of turbulence. 

The displacing solution is made more concentrated (1 g/l NaCl, 1 g/l CaClz 
aqueous solution) than the initial solution to avoid the viscous lingering effect 
(Saffman-Taylor instability) which may occur when a more viscous solution is 
displaced by a less viscous solution. Further, the liquid moves upwards, rather than 
downwards, in order to avoid the Rayleigh-Taylor instability associated with the 
presence of a denser solution above a lighter one. These precautions are necessary with 
the relatively high concentration used in this study as these two effects have been 
shown to induce both an increase in the dispersion coefficient and a characteristic 
tailing of the elution profiles. 

The concentration change of the column effluent is continuously monitored by 
a conductivity detector (Model 30063, Dionex, Sunnyvale, CA, U.S.A.). The 
temperature of the effluent is also measured in order to take into account the 
temperature dependence of the conductivity (2%/C around 2O”C), especially for the 
slowest analyses. The total dead volume of the pre- and post-column connecting 
capillary tubes, of the flow distributor and collector located at the column extremities 
and of the conductivity cell is 0.28 cm3, i.e., about 1% of the liquid volume in the 
column. 

In the calculations, the particle diameter is assumed to be equal to 0.02 1 cm and 
l/Tequal to 0.6. The diffusion coefficient, D,, is taken as equal to 1.336 . lo-’ cm’/s, 
which corresponds to the average of the individual coefficients of the two salts’*. For 
dispersion coefficient determinations, the step between the two plateaux is normalized 
between 0 and 1 and measurements are performed in the 5-95% range of the front. At 
each time in this range, the experimental normalized concentration value gives, using 
eqn. 6 and the tabulated error function, the value of the reduced parameter X = (L - 

~it)/Z@, where t is the elution time. Plotting Xfi vs. t gives a straight line for 
a Gaussian curve. The dispersion coefficient is obtained by linear regression from the 
intercept of this plot and the mean velocity from the slope. This mean least-square 
method of determination of D has the advantage of taking into account all 
experimental data for the front in the 5-95% range of the concentration step rather 
than the peak width at some more or less arbitrary selected concentration level, as 
classically performed in the small-pulse injection method. 

RESULTS 

The results obtained experimentally by this procedure are reported in Fig. 3, 
which shows the plot of the reduced dispersion length, I,+ vs. the P&let number on 
a logarithmic scale. This curve has the characteristic shape of the classical Van 
Deemter curves with a minimum at a P&let number of cu. 3 for a reduced dispersion 
length of about 0.5. This corresponds to a reduced plate height of 1, which is lower than 
that usually observed in packed chromatographic columns. Clearly, this low value is 
due to the use of impervious particles and to the quality of the homogeneity of the 
packing. With increasing P&let number the dispersion length increases until it reaches 
a constant value of about 1 at large P&let numbers. 
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Fig. 3. Log-log plot of the reduced dispersion length WIW.S P&let number for a 16.6 cm x 2.4 cm I.D. 
column packed with 21Oqm glass beads. 

The models described above all predict a constant 1, value at large velocities, as 
observed, but they differ essentially in the exponent of the velocity in the hydro- 
dynamic dispersion term of the dispersion length equation. The various equations can 
all be expressed by the following form: 

D Dm 1 

v=TU+1 1 (21) 

with n = l/3, l/2 and 1 for the Horvath and Lin, Huber and Giddings (or, 
equivalently, Bouchaud and Georges) models, respectively. The parameter A = Ad,, 
represents the convective (geometric) dispersion process for the three models (eqns. 12, 
14 and 16). It is the limiting value of the dispersion length for large velocities. The 
B coefficient, taking into account the hydrodynamic dispersion, differs from one 
model to another. Looking for a linear relationship as an easy visual, and also 
quantitative, test to check the validity of the agreement between experimental (D, U) 
data and the theoretical expressions described above, one can transform eqn. 21 as 
follows: 

Y=$+f 

as: 

(22) 

(23) 

where Y is defined 

Then a plot of Y vs. V” should give a straight line if the corresponding model is correct. 
These plots are shown in Fig. 4 for the three values ofn. In these plots, only data points 
corresponding to P&zlet numbers larger than 1 are used in order to reduce the influence 
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Fig. 4. Y vs. Xplots of the experimental dispersion data with X = u” and Y = V’+ “/(D - D,/T). (A) n = 
l/3; (B) n = l/2; (C) n = 1. The straight lines correspond to mean least-square linear regressions. The other 
curves correspond to a second-degree polynomial fit. 

of the uncertainties in the values of D, and Ton the denominator (D - D,/T). The 

best mean least-square linear tits are also indicated for each plot. Although, for the 
three curves, a monotonous increase of Y with V” is observed, as expected from eqn. 
22, it clearly appears that a remarkably good linear tit is obtained for n = 1, while the 
curve for n = l/2 is slightly concave and at for n = l/3 has a still more pronounced 
concavity. 

As only one value of n can correctly describe the experimental data and as n = 
1 appears to be the best of the three tested values, one cannot expect the plots for the 
two other n values in Fig. 4 to be straight lines. It is therefore of interest to check the 
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coherence of the shapes of the curves in Fig. 4, i.e., to check that the observed shapes of 
the curves in Fig. 4A and B are in agreement with the shape that takes the theoretical 
variation corresponding to n = 1, when it is plotted according to the transformation of 
eqns. 22 and 23 but with another value of the parameter n (we shall take n = l/3 and 
n = l/2). For n = 1, eqn. 22 becomes 

Combining eqns. 23 and 24, one obtains 

y = $ + B$!_“,,” 
with 

(24) 

X=u” (26) 

Eqn. 25 clearly shows that the Y VS. Xcurve should not be a straight line if n # 1. When 
n < 1, it has a minimum, for: 

(27) 

The shape of the Y VS. Xcurves should therefore be concave for n c 1, which is indeed 
what is observed in Fig. 4A and B. The linear regression of the data according to eqn. 
23 for n = 1 gives A = 0.022 and B = 3.40 (all dimensional values are in c.g.s. units). 
With these values, eqns. 25 and 27 give X0,, = 0.24 and Y,,,, = 16 for n = l/3 and 
X,,,, = 0.081 and Y,,, = 7.3 for n = l/2. Although the number of experimental points 
at low velocities in Fig. 4 is too small to show definite evidence of the presence of 
a minimum in the plots for n = l/3 and n = l/2, the coordinates of the minima for the 
two curves correspond roughly to those of points obtained at low velocity, which again 
agrees with the fact that the best of the three n values is 1. 

Of the three n values for which dispersion models have been developed, n = 
1 appears to be the best. One may wonder, however, if another value of n, not 
necessarily corresponding to a previous model, could provide a still better fit of the 
experimental data according to eqn. 21. This can be done by writing this equation in 
the form 

Z=ln(*-i)=ln(i)-nlnIJ 

Then, a plot of Z VS. In U should give a straight line, the slope of which should be equal 
to n. In fact, such a plot is very sensitive to the value of A which has to be stated. This is 
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Fig. 5. Z VS. In(U) plots of the experimental dispersion data with Z = In [U/(0 - D,/T) - l/A] for 
different values of I/A. (A) I/A = 38.2; (B) l/A = 45.0; (C) l/A = 48.0. The straight lines correspond to 
mean least-square linear regression. The other curves correspond to a second-degree polynomial tit. 

demonstrated in Fig. 5, where such plots are shown for three different values of l/A. 
The first two (1 /A = 38.2 and l/A = 45.0) correspond to the slopes given by the linear 
regression of the experimental (Y, Un) data according to eqn. 22 for n = l/2 and n = 1, 
respectively [for n = l/3, one obtains l/A = 29.8, which gives a strongly non-linear 
(Z, In 6’) plot, which, for this reason, is not shown in Fig. 51. For the sake of 
comparison, a plot for a larger l/A value (l/A = 48) is also shown. Fig. 5 indicates that 
the curve is concave for relatively low values of l/A, then becomes convex for larger 
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l/A values. Eventually, it becomes linear for a given value of l/A. A computer search 
for the l/A value giving the best linear lit of the data provides l/A = 45, which is 
precisely the value obtained by the procedure mentioned above for n = 1. With this 
l/A value, a linear regression of the (Z, In U) data gives, for the slope n, a value of 0.994, 
which, as expected, is very close to 1. Further, this l/A value corresponds to a limiting 
dispersion length at large P&let numbers equal to 0.022 cm, i.e., to 1.06 dp, which as 
can be seen in Fig. 2 is close to the experimentally obtained value, while the A values 
obtained by linear regression of eqn. 22 for the Horvath and Lin model (n = l/3, A = 
1.60 d,) and the Huber model (n = l/2, A = 1.25 dp) are too large. 

DISCUSSION 

All these results provide a strong indication that eqn. 21 gives a correct 
representation of the flow dependence of the dispersion length and that the Giddings 
model with n = 1 is the most appropriate model for describing the experimental data. 
This suggests that, among the live different levels of flow non-uniformities distin- 
guished by Giddings, either only one is affecting significantly the dispersion length or, 
if two or more of them are influencing this length, they have similar values of A/B (or, 
equivalently, n/C). Indeed, in the latter instance, adding two coupling terms with 
identical A/C values in eqn. 13 is equivalent to multiplying one coupling term by some 
appropriate constant. One finds, from a linear regression of the experimental data, 
a n value of 1.06, while the values estimated by Giddings are 0.5, 0.5 and 0.1 for 
the trans-channel, short-range inter-channel and long-range inter-channel effects, 
respectively. The B value derived by linear regression in Fig. 4C is equal to 3.40 s, 
corresponding to a C value in eqn. 10 of 0.103. The corresponding C values 
approximately estimated by Giddings for the three above effects are 0.005,0.25 and 1, 
which gives A/C values of 100, 2 and 0.1, respectively, while the experimental A/C 
value is 10. From a comparison of these estimated and experimental values it seems 
that the column does not contain long-range inter-channel non-uniformities, which 
gives some indication of the quality of the packing procedure. However, the 
experimental A, C and A/Cvalues do not correspond closely to the estimated values for 
either the trans-channel effect or the short-range inter-channel effect. If only one level 
of flow irregularities is present, as suggested above, it would have to be the 
trans-channel level which is present even in a crystal-like array of identical spheres. It is 
difficult, however, to imagine that the short-range inter-channel effect is totally absent 
because the packing procedure cannot be perfect. These remarks suggest, therefore, 
that our data reflect some combination of the trans-channel and inter-channel effects 
and that the A/C ratios for these two effects are not as different as the corresponding 
values estimated by Giddings. 

It is of interest to interpret these experimental data by means of the Bouchaud 
and Georges model, which gives the same flow dependence of the dispersion length as 
the Giddings model but which is based on a simple geometric construction. This model 
has three parameters, f, y and c, while the linear regression provides only two 
coefficients. If one assumes < is equal to the particle diameter, dp, which seems to be 
a reasonable cell size to be used, then one obtainsf = 0.41 and y = 0.11. As y is the 
velocity ratio between the two branches which have been assumed to have the same 
length, y represents a permeability ratio and can be assumed to be equal to the ratio of 
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the squares of the diameters of the two branches, according to the Poiseuille 
expression. This size ratio is then found to be equal to l/3. The Bouchaud and Georges 
model allows the dispersion behaviour of an extremely complex system such as 
a porous medium to be represented by that of a simple geometric system. 

One should not be surprised that the Giddings model provides the best tit to the 
experimental data. Indeed, the model developed by Huber is not based on a physical 
model for dispersion but relies on the empirical mass transport correlation by Hiby, 
the accuracy of which has been questioned ig*“. Further, this correlation is based on 
dispersion data obtained for PCclet numbers between 30 and 10’. This does not allow 
a full description of the curvature of the Id VS. Pe curve associated with the coupling 
effect for P&let numbers between 5 and 100. 

The discrepancy with the Horvath and Lin equation is even greater than that 
with the Huber expression. As already noted, this comes, in part, from the fact that the 
flow-dependent expression according to Pfeffer and Happel” for the stagnant 
boundary layer thickness, on which their equation is based, is only valid at large P&let 
numbers and should therefore be used only for Pe > 50 (ref. 21). At lower Pe, the 
stagnant layer approaches a constant value and so should the corresponding term in 
the dispersion length equation. Further, the implicit approximation made in the 
HorvPth and Lin derivation of the volume fraction of the free-streaming fluid [l/( 1 + 
x) = 1 - x, where x represents the ratio of the stagnant film volume to the total fluid 
volume] requires that the stagnant layer is small and thus that Pe is large. For these 
reasons, the Horvath and Lin equation should not be applied for P&let numbers lower 
than 50-100. However, it is seen in Fig. 3 that the convex part of the Id vs. Pe curve, 
which reflects the velocity dependence of the flow non-uniformities contribution to the 
dispersion length, is mainly found for Pe values between 5 and 100. It is therefore not 
surprising that the Horvath and Lin equation cannot fit the experimental data 
satisfactorily. 

Although the Giddings model provides the best fit of the experimental data in 
this study, one may wonder why it has not been found satisfactory in some previous 
similar studies with non-retained solutes and non-porous particles. In one of the first 
experimental proofs of the correctness of the then disputed coupling concept, Knoxz2 
found that the slope of the log 1, vs. log Pe curves was much smaller than 1, as a result of 
the coupling effect. However, he did not find a constant limiting value for ld at large Pe 
but, instead, that I* decreased after reaching a maximum value around Pe = 
5000-30 000, depending on the experimental conditions. This decrease was attributed 
to the onset of turbulence at large Pe. For all P&let numbers, the Id values were 
significantly affected by the d,/d, ratio of the column diameter to particle diameter, 
which was lower than in the present experiment. One can expect that a low d,/d, value 
will induce, first, a non-random porosity variation across the column radius, as noted 
by Cohen and Metzner 23 for d,/d, values lower than 30 in the case of newtonian fluids 
and, second, an important trans-column effect and, consequently, a relatively large 
n value. This can explain why the Knox data are better fitted by a modification of eqn. 
13 obtained with an integral form in which n is constant while contributions from 
different C values are weighted inversely with C. Knox also found that A is of the order 
of magnitude of the column diameter, rather than of the particle diameter as found in 
this study. 

In their experiments with d,/d,, values of about 100, as in this present study, 
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Horvath and Lin found that (I,,, Pe) data in the Pe range 0.5-10 000 are better fitted to 
eqn. 17 than to eqn. 13 or 15 (ref. 4). One can note that, at large Pe, they obtained Z, 
values 6-7 times larger than those in Fig. 3, which indicates a significant A value. 
However, the A values should be the same for the three models. Therefore, this 
probably reflects the fact that various levels of flow non-uniformities contribute to 
peak broadening and that the overall dispersion length is the result of trans-channel, 
short-range inter-channel, long-range inter-channel and, perhaps, trans-column 
effects. Then the A values of each individual effect add together at large Pe. Further, l,, 
does not reach a constant value at Pe up to 10 000, which indicates that at least one of 
these effects is characterized by a very large A/C value. Indeed, it can be shown from 
eqn. 13 that Z, - l/TPe reaches 90% of its limiting A value when Pe is equal to 9A/C. 
In addition, it must be remembered that Z,, VS. Pe data represent average dispersion data 
along the column length whereas eqns. 13, 15 and 17 are local expressions of the 
dispersion length, i.e., of half the rate of increase of the variance of the zone or front per 
unit column length. If the P&let number, for instance, is not constant all along the 
column, then the experimentally measured dispersion coefficient reflects some average 
value of the dispersion length over the range of P&let numbers scanned from the inlet 
to the outlet of the column. In Horvath and Lin’s experiments, where the pressure 
drops at the largest Pe were probably of the order of magnitude of several hundred 
bars, the pressure dependence of the diffusion coefficient may have led significant 
variations of Pe along the column. Similar longitudinal gradients in Pe are correctly 
taken into account in gas chromatography by means of appropriate compressibility 
factors when they are due to the mobile phase compressibility, but they are generally 
neglected in liquid chromatography where the experimentally determined dispersion 
coefficient (or dispersion length) is plotted as a function of the P&let number 
calculated using the value of the diffusion coefftcient at atmospheric pressure. Such 
a practice has been shown to induce a significant increase in the apparent dispersion 
length over the true local value, especially at large P&Aet numbers24. 

Finally, it is of interest, for optimization purposes, to note the minimum value of 
the reduced dispersion length, Id,min and the corresponding P&clet number, Pe,,,,. From 
derivation of eqns. 13 and 21 with n = 1, one obtains 

and 

- 

I d,min = 2 J _c - c 
T AT 

(29) 

(30) 

The coordinates of the optimum appear to be highly sensitive to the values of C but 
only to a much smaller extent to the value of A. This reflects the fact that, at the 
relatively low Pe corresponding to this minimum, the diffusive mechanism is the most 
active process for relaxation of the transversal flow inequalities. With the present 
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values of n (1.06), C (0.103) and l/T (0.6), one obtains Pe,,, = 3.15 and kd,min = 0.44. 
This minimum dispersion length, which corresponds approximately to the observed 
minimum in Fig. 3, is about half the value obtained by Horvath and Lin and also the 
best reported values for high-performance liquid chromatographic (HPLC) columns 
(reduced plate height of 2). This indicates that there is no precisely defined lower limit 
for the minimum dispersion length and that it depends strongly on the quality of the 
packing. 

CONCLUSION 

The study of the dispersion of a non-retained solute in a column packed with 
impervious spherical particles and an appropriate data treatment of the experimentally 
measured values have revealed that the experimental data are correctly fitted by the 
Giddings coupling equation whereas they deviate from the behaviour predicted by the 
Huber and, especially, the Horvath and Lin expressions, in spite of the relatively small 
differences between these equations. This validates the physical model of the coupling 
of the convective and diffusive transport processes on which the Giddings equation is 
based. 

Although the present study has dealt only with a packing of non-porous 
particles, this conclusion should also hold for packings of porous particles as the band 
broadening arising from the interstitial space is believed to be the same for these two 
kinds of packings. 

It must be emphasized that such a conclusion can be drawn because great 
precautions have been taken to obtain a packing that is as regular as possible and to 
eliminate, as far as possible, any other source of dispersion than that arising from the 
flow non-uniformities in the interstitial space of the bed, especially the band 
broadening contributions associated with the solute retention, the porous space inside 
the particles, the thermal effect due to the viscous dissipation and the pressure 
dependence of the diffusion coefficient. 

In liquid chromatographic columns packed with small porous particles, all these 
effects will give a more or less pronounced contribution to the overall dispersion. In 
addition, the usual packing procedure with these columns (filtration under pressure of 
a slurry of particles) probably leads to a longitudinal porosity gradient which may 
affect the scale and the amplitude of the flow non-uniformities and also induce 
a longitudinal cross-sectional average velocity gradient. Hence, the actual dispersion 
length is continuously changing along the column and the experimentally determined 
value corresponds to some average column length. This provides some explanation of 
the fact that HPLC experiments have not allowed the models to be distinguished. 
Accordingly, in kinetic optimization studies of the experimental HPLC conditions for 
which a relationship between dispersivity and flow velocity is required, a semi- 
empirical dispersion equation such as the Knox equation”, in which the relatively 
complicated coupling term for the dispersion length in the interstitial space is replaced 
with a simple Pe” (m w l/3) expression, will generally be satisfactory. 
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